而从11g开始,这个尴尬的问题开始得到了改善。因此从11g开始,引入了所谓的自适应游标共享(Adaptive Cursor Sharing)。该特性是一个非常复杂的技术,用来平衡游标共享和SQL优化这两个矛盾的目标。11g里不会盲目的共享游标,而是会去查看每个绑定变量,并为不同的绑定变量来产生不同的执行计划。而oracle这么做的前提是,使用多个执行计划的所带来的收益,要比产生多个执行计划所引起的CPU开销要更大。
使用自适应游标共享时,会遵循下面的步骤:
1) 一条新的SQL语句第一次传入shared pool时,还是和以前一样,进行硬解析。而且进行绑定变量窥视,计算where条件各个列的selectivity,同时如果绑定变量所在的列上存在直方图的话,也会去参考该直方图来计算selectivity。该游标会被标记为是一个绑定敏感的游标(bind-sensitive cursor)。同时,oracle还会保留包含绑定变量的where条件的其他信息,比如selectivity等。Oracle会为该谓词的selectivity维持一个范围,oracle叫做立方体(cube)。只要传入的绑定变量所产生的selectivity落在该范围里面,也就是落在该cube里面,就不产生新的执行计划,而直接拿该cube所对应的执行计划来用。
2) 下次再次执行相同的SQL时,传入了新的绑定变量,假设使用新的绑定变量的谓词的selectivity落在已经存在的cube范围里,于是这次SQL的执行会使用该cube所对应的执行计划。
3) 相同的查询再次执行时,假设所使用的新的绑定变量导致这时候的selectivity不再落在已经存在的cube里了,于是也就找不到对应的执行计划。于是系统会进行一个硬解析,这将产生第二个新的执行计划。而且新的selectivity以及对应的cube也会保存下来。也就是说,这时,我们分别有两个cube以及两个执行计划。
4) 相同的查询再次执行时,假设所使用的新的绑定变量导致这时候的selectivity不落在现存的两个cube中的任何一个,所以系统又会进行硬解析。假设这时硬解析所产生的执行计划与第一次产生执行计划一样,也就是说,在第一次评估selectivity的cube时过于保守,导致cube过小,进而导致了这一次的不必要的硬解析。于是,oracle会将第一次产生的cube与这次产生的cube合并成一个新的更大的cube。那么,下次再次进行软解析的时候,如果selectivity落在新的cube里,则会使用第一次所产生的执行计划。
我们从这里可以看到,11g对这个问题的处理非常精彩。这样做的结果是,系统开始运行时,CPU消耗可能会比较严重,但是随着系统不断运行,cube的不断合并从而不断扩大,于是系统的CPU消耗会不断下降,同时执行计划也会更加的合理。
我们来做个试验进行验证。我们采用11g新引入的执行计划管理特性来验证该特性。
与10g中的测试一样,创建一个数据分布不均匀的表,在数据分布不均匀的列上创建索引,并收集统计信息,收集时注意要收集直方图,从而让CBO知道该列上的数据分布不均匀。 hr@ora11g > create table t1 as select object_id as id,object_name from DBA_objects;
hr@ora11g > select count(*) from t1;
COUNT(*)
----------
12064
hr@ora11g > update t1 set id=1 where rownum<=10000;
hr@ora11g > commit;
hr@ora11g > create index idx_t1 on t1(id);
hr@ora11g > begin
2 dbms_stats.gather_table_stats(
3 user,
4 't1',
5 cascade => true,
6 method_opt => 'for columns id size 254'
7 );
8 end;
9 /
我们找到表t1里最大的id,然后以该id作为第一个绑定变量传入,可以想象,该绑定变量将导致走索引。 hr@ora11g > select max(id) from t1;
MAX(ID)
----------
12462
我们将optimizer_capture_plan_baselines设置为true,从而让oracle自动获取plan baseline。
hr@ora11g > alter system set OPTIMIZER_CAPTURE_PLAN_BASELINES=true;
hr@ora11g > alter system flush shared_pool;
hr@ora11g > var v_id number;
hr@ora11g > exec :v_id := 12462;
hr@ora11g > select * from t1 where id=:v_id;
hr@ora11g > select * from t1 where id=:v_id;
我们运行两遍select * from t1 where id=:v_id,从而让oracle捕获plan baseline。我们知道id为12462的记录只有一条,因此该SQL应该使用索引扫描。然后我们再为绑定变量传入1,我们知道id为1的记录有一万条,所以较好的执行计划不应该走已经生成的执行计划,而应该走全表扫描。 hr@ora11g > exec :v_id := 1;
hr@ora11g > set autotrace traceonly stat;
--之所以设置stat是为了让该sql实际执行,但不要返回所有记录,
hr@ora11g > select * from t1 where id=:v_id;
hr@ora11g > select sql_handle,plan_name,origin,enabled,accepted
2 from dba_sql_plan_baselines where sql_text like 'select * from t1%';
SQL_HANDLE PLAN_NAME ORIGIN ENA ACC
----------------------- ----------------------------- -------------- --- ---
SYS_SQL_ea05bbed6f2f670c SYS_SQL_PLAN_6f2f670c844cb98a AUTO-CAPTURE YES YES
SYS_SQL_ea05bbed6f2f670c SYS_SQL_PLAN_6f2f670cdbd90e8e AUTO-CAPTURE YES NO
我们可以发现,现在该SQL语句存在两个执行计划了,其中第一个执行计划,也就是accepted为YES的执行计划为v_id等于12462得到的,而第二个执行计划,也就是accepted为NO的是由v_id等于1得到的。第二个执行计划还没有被加入plan baseline,所以优化器不会使用该执行计划。我们将第二个执行计划的accepted改为YES,从而让oracle考虑使用该计划。 hr@ora11g > var cnt number;
hr@ora11g > begin
2 :cnt := dbms_spm.alter_sql_plan_baseline(
3 sql_handle => 'SYS_SQL_ea05bbed6f2f670c',
4 plan_name => 'SYS_SQL_PLAN_6f2f670cdbd90e8e',
5 attribute_name => 'ACCEPTED', attribute_value => 'YES');
6 end;
7 /
我们来看一下这两个执行计划分别是怎样的。
注意:在这里我们要验证oracle会为不同绑定变量生成不同的执行计划时,不能使用set autotrace traceonly exp stat等其他方式。因为set autotrace得出的执行计划始终都是第一次生成的执行计划。我们通过plan baseline从侧面来验证它。当然,我们也可以通过设置sql_trace=true从而将执行计划转储出来进行验证。 SQL> select * from table(dbms_xplan.display_sql_plan_baseline
2 ('SYS_SQL_ea05bbed6f2f670c','SYS_SQL_PLAN_6f2f670c844cb98a'));
......
--------------------------------------------------------------------------
Plan hash value: 50753647
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 6 | 126 | 2 (0)| 00:00:01 |
| 1 | TABLE ACCESS BY INDEX ROWID| T1 | 6 | 126 | 2 (0)| 00:00:01 |
|* 2 | INDEX RANGE SCAN | IDX_T1 | 6 | | 1 (0)| 00:00:01 |
--------------------------------------------------------------------------
......
SQL> select * from table(dbms_xplan.display_sql_plan_baseline
2 ('SYS_SQL_ea05bbed6f2f670c','SYS_SQL_PLAN_6f2f670cdbd90e8e'));
......
--------------------------------------------------------------------------
Plan hash value: 3617692013
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU) | Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 6 | 126 | 16 (0) | 00:00:01 |
|* 1 | TABLE ACCESS FULL | T1 | 6 | 126 | 16 (0) | 00:00:01 |
--------------------------------------------------------------------------
......
很明显,第一个是索引扫描,第二个是全表扫描。同样,我们来看一下v$sql里该sql语句有几条记录。 hr@ora11g > select sql_text,sql_id,child_number,plan_hash_value
2 from v$sql where sql_text like 'select * from t1 where%';
SQL_TEXT SQL_ID CHILD_NUMBER PLAN_HASH_VALUE
--------------------------------------------------------------------------
select * from t1 where id=:v_id 7y7tt6xyhas1g 0 50753647
可以看到,该SQL语句目前在内存里只存在一个执行计划,其plan hash value就等于我们在前面plan baseline里看到的第一个走索引的执行计划的hash value。我们把该执行计划显示出来进行确认。 hr@ora11g > select * from table(dbms_xplan.display_cursor('7y7tt6xyhas1g',0));
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------
SQL_ID 7y7tt6xyhas1g, child number 0
-------------------------------------
select * from t1 where id=:v_id
Plan hash value: 50753647
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
| 0 | SELECT STATEMENT | | | | 2 (100) | |
| 1 | TABLE ACCESS BY INDEX ROWID| T1 | 1 | 21 | 2 (0) | 00:00:01 |
|* 2 | INDEX RANGE SCAN | IDX_T1 | 1 | | 1 (0) | 00:00:01 |
......
结果很明显,正是走索引的执行计划。然后我们继续为帮定变量传入1,多执行几次。 hr@ora11g > exec :v_id := 1;
hr@ora11g > set autotrace traceonly stat;
hr@ora11g > select * from t1 where id=:v_id;
hr@ora11g > select * from t1 where id=:v_id;
hr@ora11g > select * from t1 where id=:v_id;
注意:这里,我们之所以要多执行几次,主要是因为如果只是执行一次或两次,oracle能够认识到你传入的绑定变量落在了第一次的绑定变量(12462)所在的cube之外,但是oracle认为你可能只是偶尔执行该绑定变量,所以并不一定会使用另外那个全表扫描的执行计划。多执行几次以后,你会发现consistent gets突然从1390直线下降到了715,这时就说明oracle开始使用新的全表扫描的执行计划了。
然后,这时我们再去查看v$sql里该sql语句有几条记录。 hr@ora11g > select sql_text,sql_id,child_number,plan_hash_value
2 from v$sql where sql_text like 'select * from t1 where%';
SQL_TEXT SQL_ID CHILD_NUMBER PLAN_HASH_VALUE
--------------------------------- ------------- ------------ ----------------
select * from t1 where id=:v_id 7y7tt6xyhas1g 0 50753647
select * from t1 where id=:v_id 7y7tt6xyhas1g 1 3617692013
我们发现,该SQL语句在内存里存在两条记录了,也就是存在两个子游标了,分别对应了不同的执行计划。同样,我们来看一下新产生的子游标,也就是child_number为1的执行计划是怎样的。 SQL> select * from table(dbms_xplan.display_cursor('7y7tt6xyhas1g',1));
PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------
SQL_ID 7y7tt6xyhas1g, child number 1
-------------------------------------
select * from t1 where id=:v_id
Plan hash value: 3617692013
--------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | | | 16 (100) | |
|* 1 | TABLE ACCESS FULL| T1 | 9974 | 204K | 16 (0) | 00:00:01 |
......
我们还可以从另外的角度来验证11g里的动态绑定变量窥视,也就是设置sql_trace的方式。这个方式比较简单,只要先发出:alter session set sql_trace=true以后,传入两个不同的绑定变量,然后分别就不同的绑定变量多执行几次。最后调用tkprof对跟踪文件进行分析。这里注意两个地方,第一是跟踪文件位于ADR中,不再位于user_dump_dest参数所指定的目录里了。就这里的跟踪文件而言,其所在位置缺省为:$ORACLE_HOME/diag/rdbms/<DB name>/<SID>/trace目录下;第二个要注意的是使用tkprof时,添加aggregate=no选项,缺省会将相同SQL语句合并,这样你就发现不到对于相同SQL语句的不同的执行计划了。
这里节选部分使用tkprof得到的文件内容,如下所示。 ......
SQL ID : 7y7tt6xyhas1g
select *
from
t1 where id=:v_id
......
Rows Row Source Operation
------- ---------------------------------------------------
10000 TABLE ACCESS BY INDEX ROWID T1 (cr=1390 pr=0 pw=0 time=446 us cost=2 size=21 card=1)
10000 INDEX RANGE SCAN IDX_T1 (cr=687 pr=0 pw=0 time=228 us cost=1 size=0 card=1)(object id 12463)
......
SQL ID : 7y7tt6xyhas1g
select *
from
t1 where id=:v_id
......
Rows Row Source Operation
------- ---------------------------------------------------
10000 TABLE ACCESS FULL T1 (cr=715 pr=0 pw=0 time=142 us cost=16 size=209454 card=9974)
......
从这里也可以很清楚的看到,对于不同的绑定变量,oracle能够自行选择是否应该生成更好的执行计划并使用该执行计划。
|
|